Elements from the Sea

Revision notes

Amount of substance

- A mole is the unit of 'amount of substance'.
- Moles of solid = mass / M_r
- 1 mole of any gas is 24dm³ at r.t.p.
- Concentration is measured in mol dm⁻³.
- Moles of solution = conc x vol/1000
- So conc = moles x 1000/vol
- You must be able to complete titration calculations.

Atomic structure

- An orbital is the area in which an electron spends 95% of its time.
- There are four main types of atomic orbitals: s, p, d and f.
- s-orbitals hold 2 electrons; p-orbitals hold 6 electrons; d-orbitals hold 10 electrons
- They are filled in the following order: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p.
- You need to be able to give electron configurations up to krypton.

- An ionic bond is the attraction between a positive and a negative ion.
- A covalent bond is a shared pair of electrons.
- A dative covalent bond occurs when both electrons come from the same atom.
- You need to be able to draw ionic, covalent and dative covalent bonds.

- The electron pair repulsion principle predicts the shapes of molecules:
 - 2 electron groups: linear 180° eg BeCl₂
 - 3 electron groups: trigonal planar 120° eg BF_3 and ethene
 - 4 electron groups: tetrahedral 109° eg CH₄
 - 6 electron groups: octahedral 90° eg SF₆
- Lone pairs will affect the shape and the bond angle.

- Electronegativity is the tendency to attract electrons within a covalent bond.
- The most electronegative atoms are in the top right of the periodic table.
- Electronegativity results in polar bonds.
- Some molecules with polar bonds have no overall polarity because they are symmetrical: the dipoles cancel out.

- Instantaneous dipoles are caused by the random movement of electrons in atoms and molecules. They occur in all molecules but are weak.
- Instantaneous dipoles can induce dipoles in neighbouring molecules.
- This causes a weak instantaneous dipole induced dipole bond.
- The larger the molecule, the greater the effect of instantaneous dipole induced dipole bonds.

- Molecules with an electronegative atom have permanent dipoles.
- They have permanent dipole permanent dipole intermolecular bonds, which are stronger than instantaneous dipole – induced dipole bonds.
- The stronger the intermolecular forces, the higher the boiling point of the substance.

Oxidation and reduction

- Oxidation is the loss of electrons, reduction is gain (OILRIG).
- Half equations represent the electron loss or gain in a reaction
- Mg + $\frac{1}{2}$ O₂ \rightarrow MgO
- Mg \rightarrow Mg²⁺ + 2e⁻ OXIDATION
- $\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$ REDUCTION

Oxidation and reduction

- Oxidation number is used to apply redox theory to non-ionic compounds.
 - $-SO_2$ sulphur +4
 - $-H_2S$ sulphur -2
 - $-H_2SO_4$ sulphur +6
 - SO₄²⁻ sulphur +6
 - $-H_2SO_3$ sulphur +4
 - $-H_2SO_4$ is sulphuric(VI) acid.
 - $-H_2SO_3$ is sulphuric(IV) acid.

- Group 1-3 form ions with charges +1, +2, +3.
- Group 5-7 form ions with charges -3, -2, -1.
- You need to know the names and formulae of:
 - $-NO_3^-$ nitrate(V)
 - SO₄²⁻ sulphate(VI)
 - CO₃²⁻ carbonate
 - OH⁻ hydroxide
 - NH₄⁺ ammonium
 - HCO₃⁻ hydrogencarbonate

 Ionisation enthalpy is the enthalpy change when 1 electron is removed from each atom in a mole of gaseous atoms:

 $M(g) \rightarrow M^+(g) + e^-$

- Successive ionisation energies of an atom give evidence for electron shells (2.8.8 arrangement).
- Ionisation energies across a period give evidence for subshells (s and p).

- The halogens decrease in volatility and reactivity (oxidising power) as you go down the group.
 - Fluorine, F₂, yellow gas at room temperature
 - Chlorine, Cl₂, green gas at room temperature
 - Bromine, Br₂, brown liquid at room temperature
 - lodine, I₂, grey solid at room temperature
 - Astatine, At₂, black solid at room temperature
- As you go down the group, instantaneous dipole

 induced dipole bonds get stronger because
 there are more electrons in the molecules.

- Halogens are more soluble in organic solvents than in water.
- Iodine is brown in water, purple in cyclohexane.
- Chlorine is a stronger oxidising agent than bromine or iodine, and can displace them:
 Cl₂(aq) + 2l⁻(aq) → 2Cl⁻(aq) + l₂(aq) ✓
 l₂(aq) + 2Br⁻(aq) → 2l⁻(aq) + Br₂(aq) ズ

- $Cl_2(aq) + 2l^-(aq) \rightarrow 2Cl^-(aq) + l_2(aq)$
- Half equations are: $Cl_2(aq) + 2e^- \rightarrow 2Cl^-$ RIG / oxidation no. 0 to -1 $2l^-(aq) \rightarrow l_2(aq) + 2e^-$ OIL / oxidation no. -1 to 0
- Chlorine has oxidised the iod<u>ide</u> ions (not the iod<u>ine</u>).
- In electrolysis of halide solutions, the following half equation occurs at the anode:
 2Br⁻ → Br₂ + 2e⁻ OIL / oxidation no. -1 to 0

• Halide ions can be detected by the following precipitation reactions using silver nitrate:

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ white ppt

 $Ag^{+}(aq) + Br^{-}(aq) \rightarrow AgBr(s)$ cream ppt

 $Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$ yellow ppt

• State symbols are essential in precipitation reactions.

- Halogens are hazardous, especially the gaseous ones, as they are all toxic (and the gaseous ones can diffuse a long way).
- However they have many uses (learn these):
 - Fluorine: making PTFE, HCFCs, in toothpaste
 - Chlorine: making PVC, bleach
 - Bromine: medicines, flame retardants
 - Iodine: medicines, human nutrient

Industrial processes

• Atom economy = M_r of useful product x 100

M_r of all reactants
 Percentage yield = actual yield x 100

expected yield

 The following need to be considered in developing a manufacturing process:
 Batch/continuous process
 Siting the plant
 Cost of process + raw materials
 Waste disposal
 Safety

Organic functional groups

- Halogenoalkanes R-X
- Alcohols R-OH
- Ethers R-O-R
- Alkanes saturated hydrocarbons
- Alkenes unsaturated hydrocarbons
- Arenes hydrocarbons containing a benzene ring.

Organic reactions

- Production of a halogenoalkane from an alcohol (nucleophilic substitution): $C_2H_5OH + HCI \rightarrow C_2H_5CI + H_2O$
- To purify an organic product:
 - Shake with sodium hydrogencarbonate (NaHCO₃) to remove acidic impurities.
 - Separate from immiscible liquids using a separating funnel.
 - Dry with anyhydrous sodium sulphate.
 - Distil to allow collection of the pure product.

Organic reactions

- Boiling points of halogenoalkanes increases as you go down the group.
- Iodo compounds are most susceptible to substitution as the C-I bond is the weakest C-Hal bond. (Bond strength is more important than bond polarity.)
- Other nucleophilic substitutions: $RX + OH^{-} \rightarrow ROH + X^{-}$ alcohol produced $RX + H_2O \rightarrow ROH + HX$ alcohol produced $RX + NH_3 \rightarrow RNH_2 + HX$ amine produced

Reaction mechanisms

- A nucleophile is a species with a lone pair that can form a dative covalent bond.
- The carbon atom in the C-Hal bond is slightly positive as halogens are more electronegative than carbon. Nucleophiles are attracted to this slightly positive carbon atom.
- A curly arrow represents the movement of a pair of electrons.

Reaction mechanisms

- A curly arrow goes from the lone pair on the nucleophile to the carbon atom, representing the formation of the dative covalent bond.
- At the same time, a curly arrow goes from the C-Hal bond to the halogen atom, representing the breaking of this bond.
- The products are R-Nu and the halide ion.

Reaction mechanisms

- If water or ammonia is the nucleophile, an intermediate +ve ion is formed (O or N is carrying the positive charge).
- Then one of the O-H or N-H bond breaks. A curly arrow goes from the bond to the O or N atom.
- This releases an H⁺ ion.
- The products are then R-OH + HHal or R-NH₂ + HHal.